每日一题-20240223

题目描述

238. 除自身以外数组的乘积

给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积

题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。

不要使用除法,且在 O(*n*) 时间复杂度内完成此题。

示例 1:

1
2
输入: nums = [1,2,3,4]
输出: [24,12,8,6]

示例 2:

1
2
输入: nums = [-1,1,0,-3,3]
输出: [0,0,9,0,0]

提示:

  • 2 <= nums.length <= 105
  • -30 <= nums[i] <= 30
  • 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内

进阶:你可以在 O(1) 的额外空间复杂度内完成这个题目吗?( 出于对空间复杂度分析的目的,输出数组 不被视为 额外空间。)

解题思路

image-20240318202442071

代码实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
public class Solution238Case1 {
private static int[] productExceptSelf(int[] nums) {
int[] L = new int[nums.length];
L[0] = 1;
int[] R = new int[nums.length];
R[nums.length - 1] = 1;
for (int i = 1; i < nums.length; i++) {
L[i] = nums[i - 1] * L[i - 1];
}
for (int i = nums.length - 2; i >= 0; i--) {
R[i] = nums[i + 1] * R[i + 1];
}
int[] result = new int[nums.length];
for (int i = 0; i < nums.length; i++) {
result[i] = L[i] * R[i];
}
return result;
}

public static void main(String[] args) {
int[] nums = {1, 2, 3, 4};
productExceptSelf(nums);
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
public class Solution238Case2 {
private static int[] productExceptSelf(int[] nums) {
int[] result = new int[nums.length];
result[0] = 1;
for (int i = 1; i < nums.length; i++) {
result[i] = nums[i - 1] * result[i - 1];
}
int R = 1;
for (int i = nums.length - 1; i >= 0; i--) {
result[i] = result[i] * R;
R *= nums[i];
}
return result;
}

public static void main(String[] args) {

}
}